Children Living in Poverty Can Solve CCSS OA Word Problems

Professor Karen C. Fuson and Steven T. Smith Northwestern University

For more details about the CCSS-M and visual supports, please see the series of visual with audio Teaching Progressions I have made for various math domains. These can be found at karenfusonmath.com

Math Talk Community

Bridging for teachers and students by coherent learning supports

Common Core Mathematical Practices

Used in a Math Talk Community

Math Sense-Making: Make sense and use appropriate precision 1 Make sense of problems and persevere in solving them. 6 Attend to precision.	Math Drawings: Model and use tools 4 Model with mathematics. 5 Use appropriate tools strategically.
Math Structure: See structure and generalize 7 Look for and make use of structure. 8 Look for and express regularity in repeated reasoning.	Math Explaining: Reason, explain, and question 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the reasoning of others.

Figure 2

The Math Practices in action

A teacher asks every day:
Did I do math sense-making about math structure using math drawings to support math explaining?

Can I do some part of this better tomorrow?

Learning paths within and across grades for
-situations (problem types) that give meanings for operations
-single-digit computation (+- and $x \div$)

Students represent using drawings/diagrams and/or equations, then solve.

Students understand and apply properties of operations and the relationship between addition/subtraction and multiplication/division).

Levels of Children's Addition and Subtraction Methods

Levels	$8+6=14$	$14-8=6$
Level 1: Count all		
Level 2: Count on		To solve $14-8 \mathrm{I}$ count on $8+$? $=14$ I took away 8 8 to 14 is 6 so $14-8=6$
Level 3: Recompose Make a ten (general): one addend breaks apart to make 10 with the other addend Make a ten (from 5's within each addend)	Recompose: Make a Ten	$14-8$: I make a ten for $8+?=14$ $8+6=14$
Doubles $\pm n$	$\begin{aligned} & 6+7 \\ = & 6+6+1 \\ = & 12+1=13 \end{aligned}$	$\begin{gathered} 6+?=13 \\ =6+6+1 \\ =12+1=13 \end{gathered}$

Note: Many children attempt to count down for subtraction, but counting down is difficult and error-prone.
Children are much more successful with counting on; it makes subtraction as easy as addition.

Concepts for Each Level

Level 1: Each new addend and the total are separate.
Level 2: Both addends are embedded within the total.
Level 3: Addends are recomposed to make new addends (e.g. 8+6 becomes $10+4$)

Make-a-ten prerequisites
a. Partner of the larger addend to 10 (K.OA.4)
b. All partners of the smaller addend to find how much over ten (K.OA.3)
c. $10+\mathrm{n}$ for $\mathrm{n}=1$ to 9 (K.NBT.1)

Represent the Situation

OA: Operations and Algebraic Thinking
Grade 1 and Grade 2 subtypes involve algebraic thinking:

Represent the situation with a drawing, diagram, and/or an equation.

Then decide how to solve for the answer.

K and 1 Seeing 1 to 10

This large Number Parade was on the wall and used in many activities.

See the 5-groups that make 6 through 10 .

K U1 Working with numbers 1 to 5

Unit 1: Activities to 5 and then to 10.
A) Put number tiles in order at top and 5 red and 5 blue tiles at bottom.
B) Pull down the number tile for the number said.
C) Show that number of tiles.
D) Have a Math Talk Discussion:
a. relate the visual quantity to fingers, sounds, and body movements
b. practice visual imagery (Close your eyes. Visualize.)
c. describe different arrangements by color, dot/no dot, spatial relationships (e.g., $3=2+1$)
d. change your arrangement and discuss why you still have 3
e. copy the arrangement of another person
f. see partners of numbers already described in c and create new partners
g. graph on a graph map (2 rows/columns of 10 empty squares).

K U2 Working with 5-groups

Unit 2: Use 5-groups to show quantities, addition expressions, and total for numbers 6 to 10
Use Unit 1 Steps A, B, C with a group of 5 and some units:
one unit of 5 red or blue squares, each with a dot on one side or one unit of 5 pennies drawn in squares on a strip.
Children put tiles for the total to the left and for an addition expression for the partners (addends) to the right.

K U3 Working with partners (addends)

Unit 3: Partners of 2, 3, 4, 5, and 6 with tiles, break-apart stick, total, and addition expression
A) Make a number with a numeral tile and that many things.
B) Elicit partners of that number.
C) Use a break-apart stick to show the partners.
D) Use number tiles and the + tile to show an addition expression for the partners and say the partners:
Six is four plus two. Show with fingers.
Teacher writes equation $6=4+2$.

D)

E) Switch the partners with objects, stick, and tiles.

Teacher writes $6=2+4$ beside $6=4+2$.
F) Repeat for different partners of the number.
G) Repeat all steps with a different number.

K Partner (addend) unit test results

$3 \quad 90 \quad$ 1. Write the Partners

$4 \quad 92$ 2. Draw a line to show the partners. Write the partners.

492
3. Draw Tiny Tumblers on the Math Mountain

K Partner (addend) unit test results

$4 \quad 85$ 4. Write the partner equation.

$$
\begin{array}{l|l|l|l|l}
\hline 000 & 4=3+1 \quad 4=2+2 & 0000 & 4=1+3 \\
\hline
\end{array}
$$

$588 \quad$ 5. Shade to show all the 5-partners in order. Write the 5-partners.

$1+4$

$2+3$
$3+2$
$4+1$

583 6. Draw Tiny Tumblers on the Math Mountain and write the partner.

K Word Problem Solving Progression

\uparrow
B) Mathematize situations from student lives and from pictures of scenes to describe word problem situations and ask questions.

\uparrow

A) See and draw groups of 1 to 5 things in a real-world scene, then 6 to 10 things.

\uparrow

B) Teacher and children act out each

1 to 5 situation with objects and fingers.
\uparrow
A) Work on numerical triad relationships for 1 to 5 and then 6 to 10 with 5 -groups. 00000 six 6 o

Situation and Solution Repesentations

Written Mathematical Marks
Five has three and two inside.
Four plus three equals seven.
Seven minus four equals three.
Put together, add, and, in all, total, together, altogether, in the beginning, then, at the end, take away, left, rest

Expressions Equations
$3+2 \quad 5=3+2$
$\begin{array}{lll}4+3 & 4+3=7 & 4+3= \\ 7-4 & 7-4=3 & 7-4= \\ \square\end{array}$
7-4
$7-4=3$
$7-4=\square$
Teacher writes \rightarrow child makes with
number and $+/$ - tiles \rightarrow child writes

K Word Problem Solving Progression

E) Children tell and retell word problems for any situation; continue to focus on language.
\uparrow
D) Continue approaches below using new familiar settings. Retell and work on language and on the question.

$$
\uparrow
$$

C) Elicit word problems from a familiar setting and focus on/relate/extend the language: Children retell in different words and practice the question.
\uparrow
B) Mathematize situations from student lives and from pictures of scenes to describe word problem situations and ask questions.

\uparrow

A) See and draw groups of 1 to 5 things in a real-world scene, then 6 to 10 things.

Totals connections.
D) Children make math drawings and also solve by fingers. Children write expressions or equations. Teacher writes equations and elicits and summarizes all

$$
\uparrow
$$

C) Each child solves with fingers or objects and shows the expression with number tiles. Children share and discuss
6 to 10 solutions. Teacher makes math drawings and writes equations and relates all aspects.
B) Teacher and children act out each situation with objects and fingers.

\uparrow

A) Work on numerical triad relationships for 1 to 5 and then 6 to 10 with 5 -groups.
ooooo six 6
o

Half-Day Kindergarten

Task	Stigler, Lee, Stephenson			MathExpressionsHalf-DayKinder-garten$n=68$
	Japanese Grade 1 $n=120$	Chinese Grade 1 $n=120$	U.S. Grade 1 $n=240$	
Addition				
$5+4$	99	96	77***	100
$3+2$ word problem: Joey had 3 marbles and then found 2 more. How many marbles does Joey have now?	98	97	89***	97
Subtraction				
9-1	80	74	52***	81
6-2 word problem: Jan's father gave her 6 cookies. She ate 2 of them. How many did she have left?	93	81	73*	90

Show the 8-partners and switch the partners.

1. 000000 an $7+1$ and $1+7$
2. $000000 \mathrm{OO} 6+2$ and $2+6$
3. 0000000 and $5+3$
4. 0000000 and $4+4$

Grade 1

 PartnerSwitches

Write the partners and the switched partners.

6.

Grade 1 Teen Problems

Stigler, Lee, Stephenson

Japanese	Chinese	U.S.	Math
Grade 1	Grade 1	Grade 1	Expressions
$n=120$	$n=120$	$n=240$	Grade 1
$n=90$			

Addition $9+4$ word problem: Some

 squirrels picked up 9 nutsyesterday and 4 nuts today. How many nuts do they have altogether?
Subtraction 15-9 word problem:
There were 15 bunnies. 9 hopped
66***
38***
30***
89 away. How many bunnies were left?
Totals $\leq 10: 5+4$ and $9-1$
98

Children's Strategies

Compare Counting Strategies Children are introduced to comparing "counting all" to "counting on." Counting on differs from counting all in that the counting is abbreviated by counting on from the greater number. This is especially important when children start adding numbers with totals greater than 10.

Grade 1
 Counting On Supports for Adding

Count On with Fingers Then children learn how to use their fingers to count on to find a total. The child is monitoring the known partner to decide when to stop counting.

I have 5.

Count On with Dots Children also learn how to draw dots to represent one addend. Then they start with one partner and count the dots to find the total.

$$
\begin{aligned}
& 5+4=\square \\
& 5 \cdots \cdots \\
& 5+4=9
\end{aligned}
$$

1. We see 10 dogs.

7 run away.
How many are left?

Grade 1
 Relating
 Subtraction Representations

3 \qquad

2. We see 9 dogs. 5 are not barking. The rest are barking. How many are barking?

\qquad

3. Discuss How are the methods you used to solve the problems alike and different?

Solve and discuss.

4. There are 7 cats.

3 cats walk away. How many cats are left?

$$
\begin{aligned}
& 7-3=4 \\
& 3+4=7
\end{aligned}
$$

Grade 1
Varying the Unknown for Subtraction
5. There are 8 cats.

Some cats walk away.
There are 6 cats left.
How many cats walk away?
$8-2=6$

$$
6+2=8
$$

6. There are some cats. 4 cats walk away. Now there are 5 cats. How many cats are there at the start?

$$
\begin{aligned}
& 9-4=5 \\
& 5+4=9
\end{aligned}
$$

Grade 1 Unknown Addend Performance

Grade 1 Answer, Strategy, and Error Results for Easy and Intermediate Non-Compare Word Problems

Problem Difficulty	Correct Answer	Correct Strategy/ Incorrect Answer	Incorrect Strategy/ Incorrect Answer
	Totals ≤ 10 (from Unit 3 Test, given in December)		
Easy Problems	93%	4%	3%
Intermediate Problems	71%	18%	11%

Totals 11 to 18 (from Unit 5 Test, given in March)

Easy Problems	83%	9%	8%
Intermediate Problems	83%	6%	11%

PT: Addend Unknown

Rosa picked 6 carrots.

Her sister picked some too.

Together they picked 10 carrots.

How many did Rosa's sister pick?

4 carrods	6is 88
[4CARRO\%	8880800
4 carrot	000000 000 0.0
[10] $6+4=10$	000008
4 carrots	000000
悃KARTS	
Hearrits	$6+4$
6]carots	808 $0006+4=10$
[4] Car rots	
4] carrat	0000 00000
(4)carrots	
[4]carrots	800 888
[10] car of	0000 000000
4 (Arroz 000	
(4) carrot	

Grade 2 classes had a quick overview with eliciting from students of the approaches in Grade 1 for those who were not present in Grade 1.

Grade 2 Performance

Grade 2 Answer, Strategy, and Error Results for Easy, Intermediate, Compare, and Difficult Word Problem Types with Totals 11 to 18

Problem Difficulty	Correct Answer	Correct Strategy/ Incorrect Answer	Incorrect Strategy/ Incorrect Answer
Easy Problems	96%	0%	4%
Intermediate Problems	89%	5%	5%
Compare Problems	82%	8%	10%
Difficult Problems	77%	4%	20%

Take From: Change

Unknown

Jenna has 11 goldfish.

She gives some to her friend.

Now she only has 7 goldfish.

How many goldfish did she give to her friend?

Class B

goldfish $\prod_{i+4}^{11}-4=7$

4 goldfish $\quad{ }_{9}^{11-\text { - }}=7$
(4) gold e io $\quad 21-\sqrt{4}=7$

(4) goldfish	$11-7=(14)$ $7+(4)$ $=11$

7 gold fish	$11-4=7$ d
0000000ϕ dh	

14 goldfish $11-7=4$
goldfish in
4/goldfish 分 $_{11} 7+$ 囲 $=11$

4 goldfish

Situation Equation

$$
\begin{array}{|ll|}
\hline 4 \text { fish. } & \text { If-14 }=7 \\
\hline 4 \text { goldfish } & 11-7=\sqrt{47}
\end{array}
$$

Solution Equation

Take From: Start

Unknown

Joey had a bag of peanuts.
He gave 8 peanuts to his friend.
Then he had 7 left.

How many peanuts were in the bag?

(15) peanuts	¢ 8
(15) pearmats	
15 peaputs	
15 pea nuts	nuts $15-8=7$
115 peanuty	
15]peanots	
15peanuts	$8+7=1.15$
[1] prabuts	$+4+1+1$ $8-7=1$
(15) Peants	
15 peanuts	$\text { is } \quad \begin{aligned} & 8+7=\sqrt{15} \\ & {[15]-7=8} \end{aligned}$
11 peanuts	$\begin{aligned} & 8-7=1 \\ & 0 \text { рф中中 } \end{aligned}$
15 Peanuts	5 $8+7=15$
(3) Peanuts	ats
11 Peunuts	$5 \quad \begin{array}{cc} 8-7=11 & 11 \\ 0 & 11 \\ \hline \end{array}$
15 Peanuts	- $015-8=7$

In March Jana read 15 books. Lisa read 8 books.

 How many fewer books did Lisa read than Jana?Matching Drawing of Quantities

7 books

Numerical Relationships Shown in Math Mountain

Comparison Bar Drawing of Quantities

7 books

A Situation Equation

$$
\underset{\text { Lisa }}{8}+\underset{\text { more }}{7}=\underset{\text { Jana }}{15}
$$

A Solution Equation
$15-8=7$
Jana Lisa fewer 7 books (7 was in the \square)
$+8=15$
$15=$$+8$

$$
15-\square=8
$$

Circle or Stick Drawings
Non-matching drawings were also made alone or with equations.

Figure 9. Grade 2 Solution Approaches to a Compare: Difference Unknown Problem

For larger numbers students will need to move from a situation equation to a solution equation or a computation.

Labeling the equation with situation content will be important.

See these NCTM books for more information about OA problem solving:

Focus in kindergarten:
Teaching with curriculum focal points

Focus in grade 1:
Teaching with curriculum focal points

Focus in grade 2:
Teaching with curriculum focal points

Visual models are central core ideas and practices in the CCSS and support reasoning and explaining.

The models can be simple math drawings that students can make and use in their own ways in problem solving and explaining of thinking.

We want classrooms to be using the mathematical practices in the Math Talk Community:
Students focus on math sense-making about math structure using math drawings (visual models) to support math explaining.

Children Living in Poverty Can Solve CCSS OA Word Problems

Professor Karen C. Fuson and Steven T. Smith Northwestern University

For more details about the CCSS-M and visual supports, please see the series of visual with audio Teaching Progressions I have made for various math domains. These can be found at karenfusonmath.com

